Обязательный образовательный минимум по математике

Тренировочный вариант с ответами

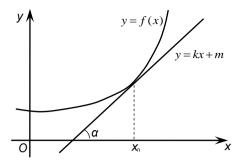
Предмет	Математика
Класс	11

Алгебра

Определение производной:

 $f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$, где Δx – приращение

аргумента, Δf – приращение функции.


Геометрический смысл производной:

 $f'(x_0) = k = tg \alpha$, где k — угловой коэффициент касательной,

проведенной к графику функции в точке с абсциссой x_0 α — угол между касательной и положительным направлением оси абсцисс.

Физический смысл производной: v(t) = S'(t),

- S(t) положение тела на прямой в момент времени
- v(t) мгновенная скорость в момент времени t.

Производная суммы:

$$(U+V)'=U'+V'$$

Производная произведения:

$$(U \cdot V)' = U' \cdot V + U \cdot V'$$

Следствие: $(CU)' = C \cdot U'$, где C - число

Производная дроби:

$$\left(\frac{U}{V}\right)' = \frac{U' \cdot V - U \cdot V'}{V^2}$$

Производная сложной функции:

$$(f(g(x)))' = f'(g(x))g'(x)$$

Таблица производных:

$$C' = 0$$
, C -число $(e^x)' = e^x$
 $(x^p)' = px^{p-1}$ $(ln x)' = \frac{1}{x}$
 $(sin x)' = cos x$ $(cos x)' = -sin x$
 $(tgx)' = \frac{1}{cos^2 x}$ $(ctgx)' = -\frac{1}{sin^2 x}$
 $(a^x)' = a^x * ln a$

- 1. Если $f'(x) \ge 0$ в каждой точке интервала, то функция возрастает на нем.
- 2. Если $f'(x) \le 0$ в каждой точке интервала, то функция убывает на нем.
- 3. Для того, чтобы функция в некоторой точке имела экстремум необходимо и достаточно, чтобы f'(x) = 0

и при переходе через эту точку производная меняла знак с «минуса» на «плюс» - точку минимума; с «плюса» на «минус» точку максимума.

Практическая часть.

 $(\log_a x)' = \frac{1}{x * \ln a}$

- 1. Найдите: а). f'(x), б). f'(-1), если $f(x)=x^3-3x^2+5x+3$. 2. Найдите: а). f'(x), б). f'(0), если $f(x)=e^x$ ·cosx
- 3. Найдите: a). f'(x), б). f'(4), если $f(x) = \frac{x^2 + 2}{x 3}$.
- 4. Дана функция $f(x)=x^3-9x^2-21x-7$. Найдите: а). критические точки функции на отрезке [-2;3]; б). наибольшее и наименьшее значения функции на отрезке [-2; 3].
- 5. Напишите уравнение касательной к графику функции $f(x)=x^2-6x+5$ в точке графика с абсциссой $x_0=2$.

Обязательный образовательный минимум по математике

Тренировочный вариант без ответов


Алгебра

Определение производной: f'(x) =,

где Δx — приращение аргумента, Δf — приращение функции.

Геометрический смысл производной:

$$f'(x_0) =$$
 , где k — α —

математика

Физический смысл производной: S'(t) =

$$S(t)$$
 –

v(t)

v(t) –	
Производная суммы: $(U+V)'=$	Производная произведения: $(U \cdot V)' =$ Следствие: $(CU)' =$, где C – число
Производная дроби:	Производная сложной функции:
$\left(\frac{U}{V}\right)' =$	(f(g(x)))' =
Таблица производных:	1. Если в каждой точке интервала, то
$C'=$, C -число $\left(e^{x}\right)'=$ $\left(x^{p}\right)'=$ $\left(\ln x\right)'=$ $\left(\sin x\right)'=$ $\left(\cos x\right)'=$ $\left(tgx\right)'=$ $\left(tgx\right)'=$	функция возрастает на нем. 2. Если в каждой точке интервала, то функция убывает на нем. 3. Для того, чтобы функция в некоторой точке имела экстремум необходимо и достаточно, чтобы и при переходе через эту точку производная меняла знак с «минуса» на «плюс» -точку; с «плюса» на «минус» - точку

Четверть Предмет

Класс

Практическая часть.

- 1. Найдите: а). f'(x), б). f'(-1), если $f(x)=x^3-3x^2+5x+3$. 2. Найдите: а). f'(x), б). f'(0), если $f(x)=e^x$ ·cosx
- 3. Найдите: a). f'(x), б). f'(4), если $f(x) = \frac{x^2 + 2}{x 3}$.
- 4. Дана функция $f(x)=x^3-9x^2-21x-7$. Найдите: а). критические точки функции на отрезке [-2;3]; б). наибольшее и наименьшее значения функции на отрезке [-2; 3].
- 5. Напишите уравнение касательной к графику функции $f(x)=x^2-6x+5$ в точке графика с абсциссой $x_0=2$.

Решения: